
Frank Timmers

Birth of LibreSSL and its current status

Consutant, Snow B.V.

 Background

 What is LibreSSL

• A fork of OpenSSL 1.0.1g
• Being worked on extensively by a number of OpenBSD developers

 What is OpenSSL
• OpenSSL is an open source SSL/TLS crypto library
• Currently the de facto standard for many servers and clients
• Used for securing http, smtp, imap and many others

 Alternatives
• Netscape Security Services (NSS)
• BoringSSL
• GnuTLS

 What is Heartbleed

• Heartbleed was a bug leaking of private data (keys) from both client
and server

• At this moment known as “the worst bug ever”
• Heartbeat code for DTLS over UDP
• So why was this also included in the TCP code?
• Not the reason to create a fork

 Why did this happen

• Nobody looked
• Or at least didn’t admit they looked

 Why did nobody look

• The code is horrible
• Those who did look, quickly looked away and hoped upstream could

deal with it

 Why was the code so horrible

• Buggy re-implementations of standard libc functions like random()
and malloc()

• Forces all platforms to use these buggy implementations
• Nested #ifdef, #ifndefs (up to 17 layers deep) through out the code
• Written in “OpenSSL C”, basically their own dialect
• Everything on by default

 Why was it so horrible?

crypto_malloc
• Never frees memory (Tools like Valgrind, Coverity can’t spot bugs)
• Used LIFO recycling (Use after free?)
• Included debug malloc by default, logging private data
• Included the ability to replace malloc/free at runtime

 #ifdef trees

• #ifdef, #elif, #else trees up to 17 layers deep
• Throughout the complete source
• Some of which could never be reached
• Hard to see what is or not compiled in

1. #ifdef OPENSSL_WINDOWS
2. #elif defined(OPENSSL_POSIX)
3. #elif defined(OPENSSL_OSX)
4. #elif defined(OPENSSL_VMS)
5. # ifndef OPENSSL_POSIX
6. # else
7. #else
8. #endif

 Everything on by default

 #ifndef OPENSSL_NO_CAMELLIA
 #ifndef OPENSSL_NO_CAPIENG
 #ifndef OPENSSL_NO_CAST
 #ifndef OPENSSL_NO_CMS
 #ifndef OPENSSL_NO_COMP
 #ifndef OPENSSL_NO_DEPRECATED
 #ifndef OPENSSL_NO_DES
 #ifndef OPENSSL_NO_DES
 #ifndef OPENSSL_NO_DESCBCM
 #ifndef OPENSSL_NO_DH
 #ifndef OPENSSL_NO_DSA
 #ifndef OPENSSL_NO_DTLS1

 Other examples

• Support for Big Endian amd64 support

• Compiler options NO_OLD_ASN1 and NO_ASN1_OLD

• Backward compatibility for a mistake which was fixed within a month 14 years ago

• Char buf[288+1], tmp[20], str[128+1];

• static const char rnd_seed[] = "string to make the random number generator

think it has entropy”

• malloc(items*size) -> reallocarray(items, size)

• Socklen_t

 So why a fork

• Buggy re-implementations of standard libc functions like random()
and malloc()

• Forces all platforms to use these buggy implementations
• Nested #ifdef, #ifndefs (up to 17 layers deep) through out the code
• Written in “OpenSSL C”, basically their own dialect
• Everything on by default

• Serious bug report sitting on RT for 4 years with one liner fix
• Fixes provided to the upstream do not get merged

 Who is to blame

OpenSSL ?

 Everyone is guilty

OpenSSL is Open Source, used by many vendors
• OpenBSD
• FreeBSD
• Linux (Redhat/Debian/Ubuntu/etc)
• WindRiver
• HP-UX / AIX / Solaris
• Cisco / Juniper / F5 and other appliance manufacturers
• Microsoft

=> All had access to the source

 Everyone is guilty

All had access, but all ran away

 LibreSSL the first 30 days

• Fix CRYPTO_malloc
• OpenSSL 1.0.1g was 388,000 lines code
• Removed 90,000 lines of C, about 150.000 lines from all source files
• The unidiff between OpenSSL and LibreSSL aprox 500,000 lines
• Many bug fixed
• Start KNFing the whole thing (man 9 style)
• More readable code, but some scary parts still remain

 MAN 9 style

 LibreSSL current state

• Removed even more obsolete code
• DOS

• Win16 and other obsolete windows flavors

• MacOS Classic (Pre OSX)

• Obscure things you’ve never heard about
• Etc. etc. etc

• More code cleanup and KNFing
• More bug fixing (OpenSSL’s RT remains a valuable resource)

• Mostly stopped deleting code
• Replaced OpenSSL in OpenBSD 5.6, released 1 Nov 2014
• Replaced OpenSSL in OpenELEC 5.0, released 28 Dec 2014
• H2O HTTP Server 1.2.0 now bundles LibreSSL by default

 LibreSSL current state

• Even added some new features (crypto)
• Brainpool
• ChaCha

• Poly1305

• ANSSI FRP256v1

• Several new cypher suites based on the above

• Current release 2.1.6, released March 19, 2015
• Put back GHOST and Camellia cipher suite (reworked)
• Initial support for 32 and 64 bit Windows
• Ciphers now default to TLS1.2

 LibreSSL Future

• More code cleanup
• With easier to read code, get more developer involvement
• Bug fixes, modern coding practices and standards
• Split libcrypto from libssl
• Do portability right

 Portability

 How OpenSSL does portability
• Assume the OS provides nothing
• Mazes of #ifdef #ifndef horror
• Own implementations of layers and force all platforms to use it

(CRYPTO_malloc, CRYPTO_realloc, BIO_snprintf, OPENSSL_*)
• Assume the world is stuck in 1989

 How OpenBSD does portability
• Assume a sane target OS (POSIX, like OpenBSD) – code to that

standard.
• Build and maintain code on the above, using modern C
• Provide Portability shims to correctly do things that other OS’s don’t

provide, only for those that need it.

 Application Programming Interfaces

• All OpenSSL functions are exposed to the public API and include files
• API’s like BIO_snprintf, CRYPTO_malloc can currently not be

removed
• Internal library functions now do not use these anymore
• Normal POSIX API: easier and more developer involvement
• Preserve API compatibility with OpenSSL for now
• API will change in the future

 Application Programming Interfaces

• New APIs for loading CA keychain and certificates
• Ciphers now default to TLS1.2

 Questions

Questions

